
Section 7: Intro to Lab 4
CSE 451 18WI



Memory vs Disk

Diagram from CSE 351 18WI slides

● Memory is in close proximity to the 
CPU

○ Fast!
○ Volatile (loss of power == loss of all data 

in memory)
○ More expensive

● Disk is farther away from the CPU
○ Much slower than main memory
○ Non-volatile (loss of power != loss of data), 

persistent
○ Less expensive 



Virtual Memory

● Illusion that each 
process has all of 
memory to itself

● Would be nice if this 
illusion held even 
when processes 
together use more 
space than available 
in memory

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

Page 11

Page 12

Page 13
...

Page 1024

Memory

= Page in Use

Process 1

Using 512 pages

Process 2

Using 256 pages

Process 3

Using 256 pages

Pages 
Used 

512 

768 

1024 

Process 4

Using 256 pages 1280! 
After lab 4, this will 

be possible!



Creating the illusion of more memory

● Since we need to make it seem 
like there is more than 4MB of 
memory, we will need somewhere 
else to store data

● Can use the disk to store extra 
data, and page it in to memory on 
demand (called “paging”)

Memory

Disk



Paging Example - Assumes OS has only 4 pages memory for simplicity

Memory
Page 1

Page 2

Page 3

Page 4

1 2
3 4
5 6
7 8

Swap 
Pages

Disk

= Available = In Use

Process 1

Process 2

This mapping could be obtained as a 
result of the following requests:

Proc 1: Requests a page of memory

Proc 2: Requests a page of memory

Proc 1: Requests a page of memory

Proc 2: Requests a page of memory

Note: This example is highly simplified



Paging Example - Swap page to disk

Memory
Page 1

Page 2

Page 3

Page 4

1 2
3 4
5 6
7 8

Swap 
Pages

Disk

= Available = In Use

Process 1

Process 2

Process 1 

requests an 

additional page

Memory

Page 2

Page 3

Page 4

2
3 4
5 6
7 8

Swap 
Pages

Disk

Process 1

Process 2

1

Page 1

1. Move the least 

recently used page 

to disk!

2. Allocate the 

new page!



Paging Example - Page fault (Page not present), Part 1

= Available = In Use

Process 1 tries to 

read from its 1st 

page

Page Fault!

Memory

Page 2

Page 3

Page 4

2
3 4
5 6
7 8

Swap 
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

Need to make room 

for the page stored 

on disk.

1. Move the least 

recently used page to 

disk to make room!

Memory

Page 3

Page 4

3 4
5 6
7 8

Swap 
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

2

Page 2

Continued on next slide...



Paging Example - Page fault (Page not present), Part 2

= Available = In Use

Process 1 tries to 

read from its 1st 

page

Page Fault!

Now that we have an 

empty spot in 

memory:

2. Move the 

requested page into 

memory. 

Memory

Page 3

Page 4

3 4
5 6
7 8

Swap 
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

2

Page 2

Memory

Page 3

Page 4

3 4
5 6
7 8

Swap 
Pages

Disk

Process 1

Process 2

1
2

1
2

3

1

Page 1

2

Page 2



XK’s Memory

XK’s hardware is emulated by QEMU. In kernel/Makefrag we set up the 
options we will pass to QEMU. 

Before (Labs 1 - 3):

16MB (4096 pages)

After (Lab 4):

4MB (1024 pages)

QEMUOPTS += -m 16M QEMUOPTS += -m 4M



XK’s Disk

● Set up in mkfs.c (this file is used by QEMU, run by the host OS before XK 
boots and sets up the disk)

● Need to add a swap region to use for pages swapped out to disk

Boot 
Block

Super 
Block Bitmap Inodes Extent Unused

Add Swap 
Region Here!

● 512 bytes in a disk block
● 4096 bytes in a page
● Therefore, need 8 disk 

blocks per swap page



Representing the Swap

● How do you add the swap region to disk?
○ Hint: lab4.md diagram and mkfs.c

● How should we keep track of a memory page that is in swap region?
○ Hint: See how kalloc.c tracks physical pages for a design example

● How do you track in a vspace whether a page is in physical memory or 
swap memory?

○ Hint: look at vpage_info and how that was used in Lab 3 COW fork

● What should happen when a swapped memory page is shared via 
copy-on-write fork?



Swap In

● When should we load pages from the swap region?
○ Hint: similar to lab 3’s “when should we make a physical copy of a COW page?”

● When a page is swapped in, what needs to be updated?
○ Hint: who/what keeps track of whether a virtual page is in the swap?



Swap Out

● When should we flush pages to the swap?
○ Hint: Look at kalloc.c and at the algorithm in lab4.md

● Is there a set of memory pages you don't want to flush to swap?
○ Hint: What happens if the trap code page is in the swap?

● When a page is swapped out, what needs to be updated?
○ Hint: who/what keeps track of whether a virtual page is present in physical memory?



LRU Approximation (Second Chance)

● Like FIFO, with a small change
○ Has it been accessed since the last time I checked this page?

■ If so, skip for now and clear the access bit
■ Otherwise, evict!

● Are there any exceptions to this? (Hint: previous slide)

● You’ll want to use vawasaccessed() in kernel/vspace.c


