Section 7: Intro to Lab 4

CSE 451 18WI

Memory vs Disk

e Memory is in close proximity to the

CPU
Memory o Fast!
o Volatile (loss of power == loss of all data
in memory)

o More expensive

e Disk is farther away from the CPU
Bus o Much slower than main memory
|] l o Non-volatile (loss of power != loss of data),

<USB) - persistent
W Net o Less expensive

Diagram from CSE 351 18WI slides

Virtual Memory

lllusion that each
process has all of
memory to itself

Would be nice if this
illusion held even
when processes
together use more
space than available
in memory

Page 1

Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13

Page 1024

. = Page in Use

After lab 4, this will
be possible!

1280!

Creating the illusion of more memory

Memory

Disk

Since we need to make it seem
like there is more than 4MB of
memory, we will need somewhere
else to store data

Can use the disk to store extra
data, and page it in to memory on
demand (called “paging”)

Paging Example - Assumes OS has only 4 pages memory for simplicity

This mapping could be obtained as a
result of the following requests:

Proc 1: Requests a page of memory
Proc 2: Requests a page of memory
Proc 1: Requests a page of memory

Proc 2: Requests a page of memory

[C]= Available [l = In Use Note: This example is highly simplified

Paging Example - Swap page to disk

Process 1

requests an

additional page

—

1. Move the least
recently used page
to disk!

2. Allocate the

new page!

[]=Available [l = In Use

Paging Example - Page fault (Page not present), Part 1

Memory Process 1 tries to Memory

read from its 1st

page

Page Fault!

Need to make room

for the page stored
on disk.

1. Move the least
recently used page to

disk to make room!

[]= Available [l =In Use Continued on next slide...

Paging Example - Page fault (Page not present), Part 2

Memory Process 1 tries to Memory

read from its 1st

page

/
I
Page Fault!

1
]
I
1
Now that we have an :
1
1
1
1
\

empty spotin
memory:

2. Move the
requested page into

memory.

[]=Available [l = In Use

XK's Memory

XK's hardware is emulated by QEMU. In kernel/Makefrag we set up the
options we will pass to QEMU.

Before (Labs 1 - 3): After (Lab 4):

16MB (4096 pages) 4AMB (1024 pages)

XK’s Disk

e Setupinmkfs.c (this file is used by QEMU, run by the host OS before XK

boots and sets up the disk)
e Need to add a swap region to use for pages swapped out to disk

e 512 bytes in a disk block

e 4096 bytes in a page

e Therefore, need 8 disk
blocks per swap page

Boot Super
Block Block

Bitmap Inodes Extent Unused

A

Add Swap
Region Here!

Representing the Swap

e How do you add the swap region to disk?
o Hint: lab4.md diagram and mkfs.c

e How should we keep track of a memory page that is in swap region?
o Hint: See how kalloc.c tracks physical pages for a design example

e How do you track in a vspace whether a page is in physical memory or

swap memory?
o Hint: look at vpage_info and how that was used in Lab 3 COW fork

e What should happen when a swapped memory page is shared via
copy-on-write fork?

Swap In

e When should we load pages from the swap region?
o Hint: similar to lab 3's “when should we make a physical copy of a COW page?”
e When a page is swapped in, what needs to be updated?

o Hint: who/what keeps track of whether a virtual page is in the swap?

Swap Out

e When should we flush pages to the swap?
o Hint: Look at kalloc.c and at the algorithm in lab4.md

e |Is there a set of memory pages you don't want to flush to swap?
o Hint: What happens if the trap code page is in the swap?

e When a page is swapped out, what needs to be updated?
o Hint: who/what keeps track of whether a virtual page is present in physical memory?

LRU Approximation (Second Chance)

e Like FIFO, with a small change
o Has it been accessed since the last time | checked this page?
m If so, skip for now and clear the access bit
m Otherwise, evict!
e Are there any exceptions to this? (Hint: previous slide)

e You'll want to use vawasaccessed() in kernel/vspace.c

